Tuesday, April 24, 2012

Parthenogenesis and the Dandelion

If you've been following along, you know that flowers are the sex organs of plants, specifically adapted to combine half of the DNA of a male plant (in pollen) with half the DNA of a female plant (in ovules) to produce a new plant, packaged in layers of a seed and wrapped in a fruit.  Sexual reproduction allows for each parent to pass on some of his/her genes to make an offspring that is combined from those genes.  It's why we all can see a little of each of our parents when we look in the mirror, and plants would too, if they used mirrors.  Unless they are dandelions.

Dandelions and Lake Michigan
Common dandelions, belonging to the species Taraxacum officinale, mostly do not reproduce sexually, though a few dandelions in Southern and Central Europe do.  The dandelions in North America are all clones of a few original European dandelions.  The method of cloning, or asexual reproduction, used by dandelions is called parthenogenesis.  In parthenogenesis, offspring are produced that look like normal offspring - starting out as embryos and growing to adults (versus asexual reproduction by fragmentation where the adult parent breaks in two, and viola, you have two new organisms).  For plants, parthenogenesis usually means producing ovules that have a complete copy of the mom plant's DNA, called apomixis.  The apomictically-produced ovules develop into seeds that are genetically identical to the mom plant, and there is no pollination involved.  That's female liberation (though there is a plant that does male apomixis!).

Dandelions decorating a lawn.
It takes a while to get used to the idea that plants have sex, but once you think about it, it makes perfect sense.  Sexual reproduction allows for continuity of traits being passed on from generation to generation along with genetic variation to survive in diverse habitats.  After you're used to 'normal' plant reproduction, parthenogenesis seems positively bizarre. Why would a plant want to give up on genetic diversity? Actually, lots of plants reproduce asexually by parthenogenesis (blackberries, onions, grasses and more), and there are some specific advantages.

The main advantage to asexual reproduction is the ability to capitalize on a successful genotype.  If humans could do this, we might have hundreds of little Steve Jobs growing up to make our future world a better place.  Instead, he left us a few offspring, but they each only have half his genes - and they may or may not have gotten the good ones.  For dandelions, their successful growth strategy can be reproduced in perpetuity because they are identical copies, with only random mutations providing genetic diversity.  Dandelions may have less need for genetic diversity, since the DNA they have allows them to grow differently depending on their growth conditions.  This is what makes them such successful and widespread weeds.

One last issue for today:  dandelions grow without being pollinated, but most dandelions do produce pollen (Did your childhood friends used to rub dandelions on your face?  Remember the yellow dust they left behind?).  Botanists scratch their heads a bit on this issue.  Dandelions that don't produce pollen can make more seeds, since they are not wasting their energy.  It may just be that because pollen production is genetically determined and dandelions don't evolve very quickly, the pollen production may just be an evolutionary leftover.  Also, there are some sexually-reproducing dandelions in the world, so if dandelions maintain the ability to pollinate potential dandelion mates, they could just happen upon a better combination of genes than the ones they already have.  I don't know that dandelions really need to become more successful at growing...though I love them, we have enough already!


  1. When you look at the differences between reproduction of dandelions, bees, fungi, ferns, mamals, snails, coral, and so on... just here on Earth... doesn't it make you wonder just how different it may be for life that evolved on another planet?

    1. I do wonder how different unrelated lifeforms would be, but there are so many strange creatures that seem like aliens here on earth, I will never run out of things to be amazed by. The fungi seem to have crazier life cycles than I could invent if I were trying to be silly.